1,811 to 1,820 of 1,841 Results
Dec 14, 2021 -
Advancing AI-based pan-European groundwater monitoring
Network Common Data Form - 323.2 MB - SHA-256: ad0ab24cc07a4a66b7e36408f4bd24c979c30dc305399d394cc4bf6039dddb12
Monthly precipitation anomalies (pr_a) derived from the ERA5 Land dataset (referred to:
Muñoz Sabater, J.: ERA5-Land hourly data from 1981 to present, Copernicus Clim. Chang. Serv. Clim. Data Store, doi:10.24381/cds.e2161bac, 2021.) |
Dec 14, 2021 -
Advancing AI-based pan-European groundwater monitoring
Network Common Data Form - 323.2 MB - SHA-256: 651e2e853d4421bed46ef7f5fab012dc1570a07f449fd0cc5d40606bb0fa4555
Monthly soil moisture anomalies (θ_a) derived from the ERA5 Land dataset (referred to:
Muñoz Sabater, J.: ERA5-Land hourly data from 1981 to present, Copernicus Clim. Chang. Serv. Clim. Data Store, doi:10.24381/cds.e2161bac, 2021.) |
Dec 14, 2021 -
Advancing AI-based pan-European groundwater monitoring
Network Common Data Form - 327.9 MB - SHA-256: af89272f98158109edaa1d23e07452328d923457a4b59f3a0a0acc099dafb5f9
Monthly soil moisture anomalies (θ_a) derived from the GLEAM dataset (referred to:
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A. and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporati... |
Dec 14, 2021 -
Advancing AI-based pan-European groundwater monitoring
Network Common Data Form - 335.9 MB - SHA-256: a79f2a29e8e09028af96db6fdc7039b8602ce65ce79d412f946761a5e15e1492
Monthly water table depth anomalies (wtd_a) estimates at pixels with water table depth (wtd) observations over Europe obtained by LSTM networks with modeling results as input |
Dec 14, 2021 -
Advancing AI-based pan-European groundwater monitoring
Network Common Data Form - 335.9 MB - SHA-256: 88fdab991dbe77b5d112190612fe9d012607efa22908d5152ae10558669c2670
Monthly water table depth anomalies (wtd_a) estimates at pixels with water table depth (wtd) observations over Europe obtained by LSTM networks trained on observations |
Dec 14, 2021 -
Advancing AI-based pan-European groundwater monitoring
Network Common Data Form - 335.9 MB - SHA-256: 93be9a8cda7a0ecdbeeb65bbdaf7a4ada323a3e2cf28b021531ec98c54c5261d
Monthly water table depth anomalies (wtd_a) estimates at pixels with water table depth (wtd) observations over Europe obtained by LSTM-TL |
Dec 14, 2021 -
Advancing AI-based pan-European groundwater monitoring
Network Common Data Form - 623.8 MB - SHA-256: 8f27b8c82d6d73250112146a0223a227c88fd1cd6ac12df05eb3996ddc69400d
Reconstructed European monthly water table depth anomaly (wtd_a) data RD1, obtained by LSTM-TL with ERA5 bias corrected precipitation anomalies (pr_a) and ERA5 Land soil moisture anomalies (θ_a) as input |
Dec 14, 2021 -
Advancing AI-based pan-European groundwater monitoring
Network Common Data Form - 639.7 MB - SHA-256: c60c893c86f972589f784c97b6051c3d4ed8ad09427b1a16d2889ed973adf7c9
Reconstructed European monthly water table depth anomaly (wtd_a) data RD2, obtained by LSTM-TL with ERA5 bias corrected precipitation anomalies (pr_a) and GLEAM soil moisture anomalies (θ_a) as input |
Dec 14, 2021 -
Advancing AI-based pan-European groundwater monitoring
Network Common Data Form - 394.5 MB - SHA-256: b6a76b48b023f524141fa7cc457adbc1989be928e4ab3149b540a5d328774b07
Reconstructed European monthly water table depth anomaly (wtd_a) data RD3, obtained by LSTM-TL with COSMO-REA6 precipitation anomalies (pr_a) and ERA5 Land soil moisture anomalies (θ_a) as input |
Dec 14, 2021 -
Advancing AI-based pan-European groundwater monitoring
Network Common Data Form - 394.5 MB - SHA-256: fa4354b03f608f69de350c36685c787cafd35c9dc8122e26b4ca10e3ebc0ebfd
Reconstructed European monthly water table depth anomaly (wtd_a) data RD4, obtained by LSTM-TL with COSMO-REA6 precipitation anomalies (pr_a) and GLEAM soil moisture anomalies (θ_a) as input |