1,771 to 1,780 of 1,803 Results
Aug 29, 2022 -
Data set of the manuscript 'Opposite signs in local and nonlocal soil moisture-precipitation couplings across Europe'
Plain Text - 911.4 MB - SHA-256: a49c80f9eceaf984da0e1ee01b8fd8b3cc27999380831c8609e504256c6b5794
|
Mar 28, 2022 -
Advancing AI-based pan-European groundwater monitoring
Jupyter Notebook - 82.0 KB - SHA-256: 9fae22a6005caf9cb3361e20ba0bd5954550e833e3444ef24a917abe41a77b5b
A Jupyter Notebook showing an example about the implementation of LSTM-TL |
Dec 14, 2021 -
Advancing AI-based pan-European groundwater monitoring
Network Common Data Form - 197.3 MB - SHA-256: 93abe0a605585b816742fe50b77030254c284fd236ea4319b5d7216c1bbce371
Monthly precipitation anomalies (pr_a) derived from the COSMO-REA6 dataset (referred to:
Bollmeyer, C., Keller, J. D., Ohlwein, C., Wahl, S., Crewell, S., Friederichs, P., Hense, A., Keune, J., Kneifel, S., Pscheidt, I., Redl, S. and Steinke, S.: Towards a high‐resolution regio... |
Dec 14, 2021 -
Advancing AI-based pan-European groundwater monitoring
Network Common Data Form - 327.9 MB - SHA-256: e5a3559843458d2ed2e2db5a4572539081d9cbf5c8d4b7a4d420bd019a1270ce
Monthly precipitation anomalies (pr_a) derived from the ERA5 bias corrected dataset (referred to:
Muñoz Sabater, J.: Near surface meteorological variables from 1979 to 2019 derived from bias-corrected reanalysis, Copernicus Clim. Chang. Serv. Clim. Data Store, doi:10.24381/cds.... |
Dec 14, 2021 -
Advancing AI-based pan-European groundwater monitoring
Network Common Data Form - 323.2 MB - SHA-256: ad0ab24cc07a4a66b7e36408f4bd24c979c30dc305399d394cc4bf6039dddb12
Monthly precipitation anomalies (pr_a) derived from the ERA5 Land dataset (referred to:
Muñoz Sabater, J.: ERA5-Land hourly data from 1981 to present, Copernicus Clim. Chang. Serv. Clim. Data Store, doi:10.24381/cds.e2161bac, 2021.) |
Dec 14, 2021 -
Advancing AI-based pan-European groundwater monitoring
Network Common Data Form - 323.2 MB - SHA-256: 651e2e853d4421bed46ef7f5fab012dc1570a07f449fd0cc5d40606bb0fa4555
Monthly soil moisture anomalies (θ_a) derived from the ERA5 Land dataset (referred to:
Muñoz Sabater, J.: ERA5-Land hourly data from 1981 to present, Copernicus Clim. Chang. Serv. Clim. Data Store, doi:10.24381/cds.e2161bac, 2021.) |
Dec 14, 2021 -
Advancing AI-based pan-European groundwater monitoring
Network Common Data Form - 327.9 MB - SHA-256: af89272f98158109edaa1d23e07452328d923457a4b59f3a0a0acc099dafb5f9
Monthly soil moisture anomalies (θ_a) derived from the GLEAM dataset (referred to:
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A. and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporati... |
Dec 14, 2021 -
Advancing AI-based pan-European groundwater monitoring
Network Common Data Form - 335.9 MB - SHA-256: a79f2a29e8e09028af96db6fdc7039b8602ce65ce79d412f946761a5e15e1492
Monthly water table depth anomalies (wtd_a) estimates at pixels with water table depth (wtd) observations over Europe obtained by LSTM networks with modeling results as input |
Dec 14, 2021 -
Advancing AI-based pan-European groundwater monitoring
Network Common Data Form - 335.9 MB - SHA-256: 88fdab991dbe77b5d112190612fe9d012607efa22908d5152ae10558669c2670
Monthly water table depth anomalies (wtd_a) estimates at pixels with water table depth (wtd) observations over Europe obtained by LSTM networks trained on observations |
Dec 14, 2021 -
Advancing AI-based pan-European groundwater monitoring
Network Common Data Form - 335.9 MB - SHA-256: 93be9a8cda7a0ecdbeeb65bbdaf7a4ada323a3e2cf28b021531ec98c54c5261d
Monthly water table depth anomalies (wtd_a) estimates at pixels with water table depth (wtd) observations over Europe obtained by LSTM-TL |